

Estimating Test and Rework Effort in Software Projects

BrightX Online Events

Estimating Test and Rework Effort in Software Projects

Especially in complex projects, the challenges of inaccurate Estimation are in the Test and Rework effort.

Underestimating the effort in this area is mainly due to lack of a more mature approach to estimating the required test effort and the anticipated defects and thereby requiring rework effort. If all software projects use a Quantitative Approach for estimating Test Effort, Rework Effort, and anticipated Defects, the likelihood of successfully deliver the software project will increase. Using a quantitative approach will bring value and improvement to the estimated effort's accuracy, and the quality of the software product delivered.

This presentation will share the insight into Test and Rework Estimation and Estimation of anticipated Defects, using Function Point Analysis (FPA) and Software Non-functional Assessment Process (SNAP) – two industry sizing standards under the International Function Points Users Group (IFPUG).

Event: 4th of February 2021

Place: Virtual

Host Organization: Brightest

Estimating Test and Rework Effort in Software Projects

Christine Green

info@IPbyGreen.com

CHRISTINE GREEN

Independent Senior Analyst and Forecast Advisor

- 20+ years of experience in the software industry. Focus on complex and critical software projects, programs and contracts. Special focus area in forecast, scope analysis, contract price, cost and effort of delivery
- Worked on FPA contracts for both government and private sector since 2003 for EDS, HP (employed between 1996-2017) and as an independent consultant
- M.Sc. in Mathematics and Computer science
- Certified PMP, CSM, SA, LSS BB & CFPS Fellow

www.linkedin.com/in/christinegreendk

President of IFPUG 2019-2021 CFPS Fellow 15th of September 2020

Certified CFPS since September 2000 Volunteered for IFPUG since 2003 Part of the CPM 4.3.1 review team SNAP Project Manager until APM release 2.0

Interaction during the presentation

https://ahaslides.com/BRIGHTEST1

Realistic Expectations

The single most important task of a project: setting realistic expectations.

Unrealistic expectations based on inaccurate estimates are the single largest cause of software failure.

The improvement is missing

Project Success

Leading The Way With PMTQ, PMI's Pulse of the Profession® 2019

The Success of Scope Management

- 1. Investing in actively engaged executive sponsors
- 2. Avoiding scope creep or uncontrolled changes
- 3. Maturing value delivery capabilities

IP_{bv}Green

Inadequate Sponsor Support is a Primary Cause of Project Failure

Applied Software Measurement

Agile and DevOps would shift left due to the move of critical testing practices earlier in the development lifecycle.

IP_{bv}Græn

Phase Ratios – New Developments

Phase Ratios-New Developments				
Phase	Ratios in pct.			
Plan	9%			
Specification	11%			
Design	15%			
Build	43%			
Test	16%			
Implementation	6%			
Grand Total	100%			
Source: ISBSG Benchmark R10				

Phase Ratios - Developments

Test and Rework Estimation

- Plan, estimate and execute separately
 - Use metrics related inputs
 - Learn from the past

Example of focus on Testing

BENEFITS	
FROM	
POINT OF	
VIEW	1

- » To estimate the test cases needed to be design and execute.
- To estimate the effort, cost, people and time needed for the testing activities.
- Project planning considering testing activities and development team resources needed to solve the defects.
- » Expected Quality and follow up of the actual project quality vs expected quality.
- » Functional quality SLA for delivered projects in outsourcing contracts.

Everybody gets wiser during SW development – especially the users when they test the software and see opportunities, they did not imagine... Christine Green

The V-model

Automated vs Manual Testing

Automated Estimate focus area:

- The definition and design
- The build of the automated test
- The test of the automated test

The rework

Green

&

all that cannot be automated

Manual Estimate focus area:

- The definition and design
- The test execution
- The amount of resources

The rework &

all the times you need to repeat the test

16

Measurements in Testing

Test effectiveness:

• Requirement and Design coverage

Test status:

- The number of tests run and their status
- The number of test cases and their status

Test resources:

- The time it takes to setup the Test and Defect Management Tool
- The time and cost it takes to plan, define
- The time it takes to "build"
- The time it takes to test and the number of times you need to repeat the test

Product quality:

- The number of defects and the rate of defect
- The time and cost it takes to fix the Rework effort

Test Execution status

Function Point Analysis - the Method

The Process for scope illumination, control and measurement

Function Point Analysis

Join us at IFPUG.org and LinkedIn

Estimation and Monitoring

What does it take to build a LEGO construction?

Simple construction

Complex construction

... it certainly depends on the requirements

User View

User

• Any person or thing that communicates or interacts with the software at any time.

User recognizable

• Requirements for processes and/or data that are agreed upon, and understood by, both the user(s) and software developer(s).

User view

• Functional User Requirements as perceived by the user.

Meaningful.

• User recognizable and satisfies a functional requirement.

From the user view

Boundaries from a business perspective

Boundary Drawing - The 1000 feet

Transactional Functions

	Transactional function		
		type	
Function	EI	EO	EQ
Alter the behavior of the application	PI	F	n/a
Maintain one or more ILFs	PI	F	n/a
Present information to a user	F	PI	PI

Identify Elementary Process

Unique Elementary Process

When compared to an Elementary Process already Identified, Count two Similar Elementary Processes as the same Elementary Process if they

Require the same Set of DETs (Attributes)

Require the same Set of FTRs (Logical Data Groups)

Require the same Set of Processing Logic to complete the Elementary Process

> Do Not Split an Elementary Process with Multiple Forms of Processing Logic into Multiple Elementary Processes

Example - Elevator

Use Case 1 - in the elevator The 100 Feet

Cost per Defect

Typical data for cost per defect			
Defects Found	Costs		
Defects Found During requirements	\$250		
Defects Found during design	\$500		
Defects Found during coding and testing	\$1250		
Defects Found after release	\$5000		

Defects Per FP

Software Quality for 1000 Function Points, Java and Agile Development				
Defect Potentials	Number of Bugs	Defects Per FP		
Requirements defects	750	0,75		
Architecture defects	150	0,15		
Design defects	1000	1,00		
Code defects	1350	1,35		
Document defects	250	0,25		
Sub Total	3500	3,50		
Bad fixes	150	0,15		
TOTAL	3650	3,65		
Defect removal Efficiency (DRE)	97%	97%		

Acceptance Criteria and Test

Solving the Test - tree foil knot

Final Statement: My word of wisdom

QUESTIONS?

Christine Green

Owner of IP_{by}Green

www.ipbygreen.com Skype: christine.green LinkedIn: christinegreendk

Mobile: +45 81 72 11 22 Email: info@ipbygreen.com

Result from the Ahaslides

What is the most influencing factor for the effort it takes to test

cheaper to fix early measuring measuring executing

<

info@brightest.org emilie@brightest.org www.brightest.org

ifpug@ifpug.org www.ifpug.org

Contact Information

BrightX Online Events

